The hyperbolic, the arithmetic and the quantum phase
نویسندگان
چکیده
We develop a new approach of the quantum phase in an Hilbert space of finite dimension which is based on the relation between the physical concept of phase locking and mathematical concepts such as cyclotomy and the Ramanujan sums. As a result, phase variability looks quite similar to its classical counterpart, having peaks at dimensions equal to a power of a prime number. Squeezing of the phase noise is allowed for specific quantum states. The concept of phase entanglement for Kloosterman pairs of phase-locked states is introduced. PACS numbers: 03.67.-a, 05.40.Ca, 02.10.De, 02.30.Nw § To whom correspondence should be addressed ([email protected]) The hyperbolic, the arithmetic and the quantum phase 2
منابع مشابه
Arithmetic Teichmuller Theory
By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...
متن کاملComparison of the hyperbolic range of two-fluid models on two-phase gas -liquid flows
In this paper, a numerical study is conducted in order to compare hyperbolic range of equations of isotherm two-fluid model governing on two-phase flow inside of pipe using conservative Shock capturing method. Differential equations of the two-fluid model are presented in two forms (i.e. form I and form II). In forms I and II, pressure correction terms are hydrodynamic and hydrostatic, respecti...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملNovel Subtractor Design Based on Quantum-Dot Cellular Automata (QCA) Nanotechnology
Quantum-dot cellular automaton (QCA) is a novel nanotechnology with a very different computational method in compared with CMOS, whereas placement of electrons in cells indicates digital information. This nanotechnology with specifications such as fast speed, high parallel processing, small area, low power consumption and higher switching frequency becomes a promising candidate for CMOS tec...
متن کاملAnalytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)
This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003